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Data Mining

Inducing Models and Patterns from Databases

Model: a succinct description of the complete database

Pattern: a local/partial model
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Patterns

I Frequent Patterns, e.g.,

frequent item sets (e.g., sets of items people often
buy together)

frequent sequences (e.g., people tend to rent
LOFTR I, II, III in that order)

I Association Rules

Bread ∧ Cheese → Milk (25%, 58%)

I Subgroup Discovery

Age ∈ [18, 25] ∧ Sex = male → P (acc) = 34%
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Examples of Patterns

I Areas in the brains that are often active together.

I Activation sequences, both low and high level

I If these two areas are active, this third area will
probably also be active

I If these features are present, there is a high probability
that the patient has Alzheimer
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Developmental Biology

Question:

Is there a relation between species development
and evolution?

Data: sequences of events during development:
time
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Method

I Compute the frequent sequences

I Use these frequent sequences as features of the species

I Use the Jacquard similarity measure on these featues

I Cluster the species based on this measure
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Result
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Models

I Supervised, e.g.,

Classification: Trees, Support Vector Machines, ...

Regression: Trees, Support Vector Machines, ...

I Unsupervises, e.g.,

Clustering: Density Estimation, k-NN, Hierarchical,
...

Graphical Models: Bayesian Networks, Conditional
Random Fields, ...
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Scaling

I A special attention point in data mining is scalability

in the number of attributes/features/variables
(possibly tens of thousands)

the number of tuples/rows/cases (possibly hundreds
of millions)

I Even drawing a random sample from a very large
database is far from easy...
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Only One Table?

I Most data analysis is defined on one input table.

I However, in reality the data comes from multiple
tables in multiple databases.

I Moreover, often these tables cannot be integrated
without a loss of information.

I For the simple reason that there should be a 1-1
correspondence between rows in the table and the
(real world) objects we are analysing
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Banking Example

The Data: Personal data and Account data

Integration: some possibilties

I join: one person multiple rows

I Each account as a seperate attribute

1. does it matter which amount at which bank?

2. exponential blow-up of the table

I What if an account is shared?
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In Neural Sciences

Studying Alzheimer

I Various numbers of scans

I Patient data

I Various numbers of diagnostic tests

I Treatment data

I Perhaps microarray data

This never fits one table!
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A Common Problem

This is not unique to NeuroInformatics:

I most commercial applications (like the banking
example)

I other scientific domains, e.g.,

Life Sciences (bioinformatics)

Astronomy

The solution is called Relational mining
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Relational Data Mining

The Data: one or two assumptions

1. the data resides in multiple related tables (keys and
foreign keys).

2. for predictive modelling: the target table has one
row for each object

The Algorithms: “decide” which is the best way to
integrate the tables:

I hence, the integration is part of the search

I currently often based on aggregates

State-of-the-Art: some nice algorithms, still lots to do
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Distribution

I A major reason for the neuroinformatics initiatives is
to share data.

I Is it reasonable to assume that one can ship all data to
one site?

I Possible not, because, e.g.,

privacy regulations may forbid this

the total size would be far too large

I Can we distribute the data mining?
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Distributed Data Mining

No Data Shipping Necessary in, e.g.,

I Frequent patterns: a pattern can only be frequent
globally if its is frequent in one of the sites

I Bayesian Networks

Data Shipping Necessary: subgroup mining

Research Questions (just two examples)

1. What is the least amount of information to be
shipped to allow distributed mining?

2. Can we guarantee privacy protection?
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The Volume of Data

I Like in bioinformatics, the potential volumes of data to
be analysed in neuroinformatics are staggering.

I This means you will need “big iron”

I Together with data distribution: The Grid

I Grid mining is still in its infancy
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The Features Revisited

I We have been talking about the features as if it is
clear what the good features are.

I However, raw scans are probably not often the right
data to mine (don’t expect miracles)

I Examples such as well-known brain areas might be
much better

I Which features to use is domain knowledge (i.e., I
have no clue)

I Mining might suggest new features
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Conclusion

NeuroInformatics is an interesting field for data miners

I What features, what patterns, what models?

I Relational mining

I Distributed

while preserving privacy

large volumes: Grid

I Plenty of room for the development of new algorithms
(yummy!)


