## Data Mining in NeuroInformatics

Arno Siebes
Department of Computer Science
Universiteit Utrecht



## **Data Mining**

Inducing Models and Patterns from Databases

Model: a succinct description of the complete database

Pattern: a local/partial model



#### **Patterns**

- Frequent Patterns, e.g.,
  - frequent item sets (e.g., sets of items people often buy together)
- frequent sequences (e.g., people tend to rent LOFTR I, II, III in that order)
- Association Rules

Bread  $\wedge$  Cheese  $\rightarrow$  Milk (25%, 58%)

Subgroup Discovery





## **Examples of Patterns**

- Areas in the brains that are often active together.
- Activation sequences, both low and high level
- ▶ If these two areas are active, this third area will probably also be active
- ▶ If these features are present, there is a high probability that the patient has Alzheimer

## **Developmental Biology**

#### **Question:**

Is there a relation between species development and evolution?

## **Data:** sequences of events during development:







#### Method

- Compute the frequent sequences
- ▶ Use these frequent sequences as features of the species
- ▶ Use the Jacquard similarity measure on these featues
- ► Cluster the species based on this measure





#### Result





#### **Models**

- ► Supervised, e.g.,
  - Classification: Trees, Support Vector Machines, ...
  - Regression: Trees, Support Vector Machines, ...
- ► Unsupervises, e.g.,
  - Clustering: Density Estimation, k-NN, Hierarchical,
  - Graphical Models: Bayesian Networks, Conditional Random Fields, ...



**≪ ∢ ▶ ≫ ∢** 

# **Scaling**

- A special attention point in data mining is scalability
  - in the number of attributes/features/variables (possibly tens of thousands)
  - the number of tuples/rows/cases (possibly hundreds) of millions)
- Even drawing a random sample from a very large database is far from easy...



#### **Only One Table?**

- ▶ Most data analysis is defined on one input table.
- ► However, in reality the data comes from multiple tables in multiple databases.
- ► Moreover, often these tables cannot be integrated without a loss of information.
- ► For the simple reason that there should be a 1-1 correspondence between rows in the table and the (real world) *objects* we are analysing

## **Banking Example**

#### The Data: Personal data and Account data

## Integration: some possibilties

- ▶ join: one person multiple rows
- ► Each account as a seperate attribute
  - 1. does it matter which amount at which bank?
  - 2. exponential blow-up of the table
- ▶ What if an account is shared?



## In Neural Sciences

## Studying Alzheimer

- ▶ Various numbers of scans
- Patient data
- Various numbers of diagnostic tests
- ▶ Treatment data
- Perhaps microarray data

This never fits one table!





#### **A Common Problem**

## This is not unique to NeuroInformatics:

- most commercial applications (like the banking example)
- other scientific domains, e.g.,
  - Life Sciences (bioinformatics)
  - Astronomy

The solution is called Relational mining

# **Relational Data Mining**

## The Data: one or two assumptions

- 1. the data resides in multiple related tables (keys and foreign keys).
- 2. for predictive modelling: the *target* table has one row for each object

The Algorithms: "decide" which is the best way to

- integrate the tables:
  - ▶ hence, the integration is part of the search
  - currently often based on aggregates

State-of-the-Art: some nice algorithms, still lots to do



### **Distribution**

- ► A major reason for the neuroinformatics initiatives is to share data.
- ▶ Is it reasonable to assume that one can ship all data to one site?
- ► Possible not, because, e.g.,
  - privacy regulations may forbid this
  - the total size would be far too large
- ► Can we distribute the data mining?





## **Distributed Data Mining**

## No Data Shipping Necessary in, e.g.,

- ► Frequent patterns: a pattern can only be frequent globally if its is frequent in one of the sites
- Bayesian Networks

# Data Shipping Necessary: subgroup mining

# Research Questions (just two examples)

- 1. What is the least amount of information to be shipped to allow distributed mining?
- 2. Can we guarantee privacy protection?



Universiteit Utrecht

#### The Volume of Data

- ▶ Like in bioinformatics, the potential volumes of data to be analysed in neuroinformatics are staggering.
- ▶ This means you will need "big iron"
- ▶ Together with data distribution: The Grid
- Grid mining is still in its infancy

#### The Features Revisited

- ▶ We have been talking about the features as if it is clear what the good features are.
- ► However, raw scans are probably not often the right data to mine (don't expect miracles)
- Examples such as well-known brain areas might be much better
- Which features to use is domain knowledge (i.e., I have no clue)
- Mining might suggest new features

#### **Conclusion**

NeuroInformatics is an interesting field for data miners

- ▶ What features, what patterns, what models?
- ▶ Relational mining
- Distributed
  - while preserving privacy
  - large volumes: Grid
- ▶ Plenty of room for the development of new algorithms (yummy!)